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Abstract 
This paper represents the review analysis of various types of filters design. In this paper we discuss the 

designing of filters. For discussing the designing of filters we consider the some standard paper which is based 

on filter design. First we will discuss about filter then we will discuss about types of filter and give the review 

on different ways of designing of filter. 

 

I. Introduction 
A filter is generally a frequency-selective 

device. Some frequencies are passed through the 

filter and some frequencies are blocked by filter. The 

frequencies of signals that are pass through the filter 

are called pass band frequencies and those 

frequencies that are stop by the filter are call stop 

band frequencies. For pass band frequencies, the 

system function magnitude is very large and ideally 

is a constant while for a stop band frequencies, the 

system function magnitude is very small and ideally 

is zero. The filter is also work as a remove the noise 

component from the signal and passes the remaining 

signal. Ideally a good filter removes the noise 

component completely from the signal without any 

loss of meaningful part of signal. Basically, filters are 

two types:-  

     
Fig 1.1 Description of filters 

 

Analog filter is simply to implement and 

requires few electrical components like resistors, 

capacitors and inductors while for implementation of 

digital filter, first we convert the ananlog signal into 

digital signal by taking a samples value of analog 

signal then we implement the digital filter with the 

help of adders, subtracts, delays etc. which are 

classified under digital logic components. Analog 

filter’s characteristics are fixed by circuit design and 

component values. If we want to change the filter 

characteristics than we have to make major 

modification in circuit while in digital filters do not 

require the major modification. But in digital filter 

we remove the noise easily from the signal as 

compare to analog filter that’s why generally we use 

digital filters. 

 Another classification of filters is:- 

 Butterworth Filter 

 

 Chebyshev Filter 

 Eliptical Filter  

 Linkwitz-Riley Filter 

 Eletronic Filter 

 Biquad Filter 

 Notch Filter 

 Comb Filter 

 Infinite and Finite Impulse Response Filter 

(IIR and FIR) 

 High Pass and Low pass Filter (HPF and 

LPF) 

 Bessel Filter 

 Bilinear Filter 

 Adaptive Filter 

 Kalman Filter 

 Wiener Filter 

 ARMA Filter 

In this paper we will take some filters which 

are mention above and comparison the various type 

of designing on different filters 

 

II. BUTTERWORTH FILTER:- 
The magnitude- frequency response of low-

pass Butterworth filters are characterized by [1]      

2

2 2 2

1 1
| ( ) |

1 ( / c) 1 ( / )N N
H

p
  

     

                                                                              (2.1) 

Where A is a filter gain, N is a order of a filter, c is 

a -3db frequency, p  is the pass band edge 

frequency and
2

1

1
is the band edge value of 

the
2| ( ) |H  . In Butterworth filter the magnitude 

response decreases monotonically as the frequency 

increases. When the number of order of a filter 

increases, the Butterworth filter magnitude response 

more closely approximates the ideal response. The 

Butterworth filter is also said to have maximally flat 
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response. The phase response of a butterworth filter 

becomes nonlinear as N increase. 

2.1 Designing Method 

Paper 1 

 Butterworth low pass filter is also used for a 

remove some noise from the signals like electrical 

noise, drift rates etc. in navigation system. The 

navigation system plays an important role to 

determine the position or attitude in the dynamics or 

stationary condition. So, Ping et al [2] designed an 

active low pass Butterworth filter using symbolic 

codes with the help of Sallen key topology structure. 

For designing a Butterworth low pass filter they used 

an operational amplifier as the active component like 

some resistors and capacitors which provide an RLC 

like filter performance. They take a standard and 

discrete value of resistors and capacitors then select 

the cut-off frequency. They used a Sallen-key 

topology to design a transfer function. Sallen-key 

circuit is look like a voltage control voltage source. 

Sallen- key topology is better if 

 Gain accuracy is important 

 Unity gain filter is required 

 Pole-pair Q (quality factor) is low 

Ping et al make 2
nd

 order Butterworth low 

pass filter from Sallen-key topology then for 4
th

 order 

Butterworth low pass filter they used a cascade 

connection. After that for every stage MATLAB code 

used and simulated into PSPICE. This Butterworth 

filter is the combination of resistors, capacitors and 

op-amp. It is very reliable and functional filter but 

this process of designing is very slow. This filter 

provides better analysis and verification.  

 

Paper 2 

Another method of designing a Butterworth 

low-pass filter is given by Li Zhongshen [3]. They 

present the nth-order improved Butterworth low-pass 

filter, whose n poles are chosen from the poles of 

(n+2)th-order Butterworth low-pass filter. The 

conventional Butterworth low-pass filter exist the 

contradiction problems between test precision, 

stability and response time. For improvement this 

type of problem they designed the improved 

Butterworth low-pass filter. 

Butterworth low-pass filter is a type of 

whole-pole filter, each pole of the Butterworth low-

pass filter is distributed on the complex plane.  

Phase-angle difference of two bordering poles is 
0180

n
, the angle θ between the pole which is 

nearest to image axis and image axis is
0180

2n
. For 

4
th

 order Butterworth low-pass filter, the angle of θ = 

22.5o
and for 5

th
 order θ =18o

. They notice that the 

conjugate complex poles distribute far from and close 

with image axis with increasing the order n of the 

Butterworth low-pass filter. So the damping factor δ 

is close to 1 and 0. The conjugate complex poles 

distribute closer with image axis, the corresponding 

damping factor δ is smaller, the overshoot is larger, 

and the system has poor stability. 

For improving the stability of nth-order 

Butterworth low-pass filter they chosen the poles 

from (n+2)th order of Butterworth low-pass filter. 

For example, for designing of 4
th

 order Butterworth 

low-pass filer they choose the poles from 6
th

 order 

Butterworth low-pass filter. They choose four poles 

far from image axis as poles of improved Butterworth 

low-pass filter and the angle θ of 4
th

 order improved 

Butterworth low-pass filter will equal 45o
. Similarly, 

for designing of 5
th

 order Butterworth low-pass filter 

they choose the poles from 7
th

 order Butterworth low-

pass filter and the angle of θ will equal to 38.57o
.  

They observed that if the order n of the 

improved filter is even, then the transfer function of 

the improved filter is given as 

            

22

2
1

1
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G
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Where 

              
(2k 1)

2(n 2)
k








 

If the order n of the improved Butterworth Filter is 

odd, then the transfer function of the improved filter 

is given as 

   
1

22

2
1

1
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1 2(cos ) 1

n

k

kc c c

G

s s s

w w w

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Where 

                    
2

k

k

n


 


 

Now, the improved Butterworth low-pass 

filter is analyzed. They compared with the 

conventional Butterworth low-pass filter f the same 

order, the improved Butterworth low-pass filter has 

rapid response, smaller overshoot, quality of unit step 

response is more ideal and good stability. This kind 

of filter can be used to enhance the test precision. 

 

Paper 3 

When we increase the order of Butterworth 

low pass filter then the filter will approximate the 

ideal filter characteristics. But it will increase the cost 

and circuit complexity of the filter. So Md Idro and 

Abu Hasan [4]   discovered the filter’s order on the 

ideal filter approximation due to this cost and circuit 

complexity reduced. For this they used the Sallen-key 
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topology, because Sallen-key topology requires fewer 

components and they assumed that resistors and 

capacitors are assumed to be equal. They used an 

operational amplifier to reduce the problem of 

uniformly and balancing due to sensitive of analog 

signal circuit variation in electrical parameter. For 

increasing the order of filter they used cascading of 

lower order filter. The process is show in the flow 

chart 2.1. First, they design the basic two stages op-

amp. The op-amp is design based on the following 

specification:- 

1. Phase Margin > 
060  

2. Unity Gain Frequency > 5MHz 

3. DC Gain > 100 (40 dB) 

4. Voltage Swings = 1.0V to 4.0V 

5. Slew rate > 5V/μs 

Some equations are related to the above 

specifications. By implement both specifications 

parameters and equations they design a basics two 

stages op-amp and determine the transistor size 

(W/L). 

After that they designed a first order LPF.  

 
Fig 2.1:- First-order non-inverting LPF 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 2.1:- Flow chart of Process of the Experiment 

 

The transfer function for the above 

circuit is 

Start 

 

Design basic op-amp based on specification 

Design first order Low Pass Filter (LPF) 

Design second order LPF 

(the Sallen key topology) 

Design higher order LPF by cascading 

lower order filters 

Analyze data 

Layout design 

End 
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2
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Where DC gain 
2

0

3

1
R

A
R

   and 

             

1
1

1

2 3 0

2

( 1)

c

a
R

f C

R R A




 

 

Where value of coefficient 1a is taken from 

Butterworth coefficient tables and calculate the value 

of resistor 1R  and 2R . From these values they design 

the first-order LPF. 

After the designing of first-order LPF they 

designed the second-order LPF using the Sallen-key 

tpology. The general Sallen-key LPF is given below 

 
Fig 2.2:- Generall Sallen-key LPF 

 

The transfer function of the above figure 2.2 

is:   

0

2 2

1 1 2 0 1 2 1 2 1 2

(s)
1 [ (R R ) (1 A ) R ]c c

A
A

w C C s w R R C C s


    

 

Since the Sallen-key equal component is used, the 

transfer function of figure 2.2 would be different 

from above equation 

0

2 2

0

(s)
1 (3 A )s (w RC)c c

A
A

w RC s


  
 

Where 

                

1 0

4
0

3

2

1

(3 A )

A 1
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c

c
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R

R

b

 

 
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Set the value of C and calculate the R and 0A .  

               

1

1
0

1

2

1
3 3

c

b
R

f C

a
A

Qb



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The value of 0A depends only on quality factor Q and 

vice versa. After that the final step is design the 

layout for first order Butterworth LPF. So Sallen-key 

topology is good choice to reducing the circuit 

complexity. 

 

Paper 4 
Another design is proposed by Gilbert and 

Fleming [5]. They design a high order of Butterworth 

filter with using either series connection or parallel 

connection or combination of both connections. They 

design a filter by using double precision method to 

overcome the numerical accuracy rather than a direct 

method. Due to this method the simplicity and 

economy of programming are easy but the 

programming become tough compare to direct form. 

For designing a Butterworth filter using a direct 

expansion method they obtained a transfer function 

which a digital filter may be realized is given in the 

form of z- transform 

0

0

(z)

N
p

p

p

N
p

p

p

E z

H

F z














                                            (2.2) 

Where 0 1, ,... NE E E and 0 1, ,... NF F F are the filter 

coefficients and N is the order of filter. 

For the digital Butterworth low-pass filter they 

applied bilinear transformation in equation (2.2) 

1

1
0

1
(z)

2(1 z )

(1 z )

p
N

p

p

H

a
T







 
 

 


                         (2.3) 

Where 
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0

(m 1)
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2
1,2,...,
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2

1

p
p

p c

m

N
a p N

m
N

a








   
      
 
 





 

T is the sampling period, and c is the cut off 

frequency in rad/sec. They expand powers of 
1(1 z ) and 

1(1 z ) using Binomial expansion             
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Where 

               

!

! !
0

(N p)

0

N

p

N
p N

C

otherwise

p
  





 

 

It should be noted that the summation 

variables in the denominator of (2.4) are rearranged 

at this stage in order to arrive at the final form of 

H(z) with the desired summation variable p. They 

defined 

              
(r) ( 1)

(r) C

p r

p p

N r

q q

A C

B 
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
 

They took a denominator of equation (2.4) and 

rearranged it in the following way:- 

               

0 0 0
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r N r N

r p r q N r p

p q p

p q p
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0
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p
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In the above expansion, terms are included for 

convenience that may be zero, e.g., (r) 0NB  if r > 

0. 

From the denominator of equation (2.4) 

              

   
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Hence, equation (2.4) can be written as a 
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This is the direct form of equation (2.2) with 

the filter coefficients given by 

             

 
0

2 (r)

N

p p

N r

p r p

r

E C

F a D
T




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Using double precision method they 

designed the direct form of Butterworth low-pass 

filter. They applied the double precision method only 

in denominator of transfer function and calculated the 

denominator coefficients, since the numerator 

coefficients are integer. They observed that due to 

this method the simplicity and economy of 

programming are easy but the programming become 

tough compare to direct form. 

 

2.2 Discussion:- 
Table 1 provides an analysis of designing of 

Butterworth filter. Sallen-key topology provides 

functional and reliable filter. It is also provide the fast 

method to analysis and verification of filter. And in 

another designing of Butterworth filter Sallen-key 

topology is used to reduce the cost and complexity 

the filter. But Sallen-key topology has a slow 

designation process. In double precision method, the 

simplicity and economy of programming are easy but 

programming is tough compare to direct form. 

 

2.3 Comparison Table:- 

       

Paper 

        

Approach 

       Strength       

Weakness 

Paper 

1 

Filter design 

using 

symbolic 

codes with 

help of 

sallen-key 

topology 

Reliable and 

functional filter. 

Fast method to 

analysis and 

verification 

Design 

process is 

slow 

Paper 

2 

Take a nth 

order pole 

from (n+2)th 

order filter to 

improve the 

filter 

Better 

frequency 

performance. 

Smaller 

overshoot and 

more stability 

 

 

Paper 

3 

Increase the 

number of 

order with 

the help of 

sallen-key 

topology due 

to this filter 

behaves like 

a ideal filter. 

Reduce the cost 

and complexity 

 

Paper 

4 

Design a 

filter using 

double 

precision 

method to 

overcome the 

numerical 

accuracy 

rather than 

direct form 

Simplicity and 

economy of 

programming 

are easy 

  

Applied the 

double 

precision 

method only 

in 

denominator 

of transfer 

function and 

calculated the 

denominator 

coefficients, 
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since the 

numerator 

coefficients 

are integer. 

Table 2.1:- Comparison Table of butterworth 

filter desing 

 

 

III. 3.Chebyshev Filter 
There are two types of chebyshev filters [1]. 

Type 1 chebyshev filters are all pole filters and 

exhibit equiripple behaviour in the pass band and a 

monotonic characteristic in stop band.  Type 2 

chebyshev filters contain both poles and zeros and 

exhibit a monotonic behaviour in pass band and 

equiripple behaviour in stop band. The zeros of this 

type of filter lie on the imaginary axis in the s-plane.  

The magnitude squared of the frequency response 

characteristics of a type 1 chebyshev filter is given as 

2

2 2

1
| ( ) |

1 ( )N

p

H

T

 





                             (3.1) 

Where   is a parameter of the filter related to the 

ripple in passband and (x)NT  is the Nth order 

chebyshev polynomial defined as 
1(x) cos( cos )NT N x        |x| 1                 (3.2) 

(x)NT =
1cosh( cosh )N x

    |x| > 1                 (3.3) 

 

The chebyshev polynomials can be 

represented by a recursive equation 

1 1(x) 2 xT (X) T (x)N N NT       N =1,2.....               (3.4) 

 

The type2 chebyshev filter magnitude 

squared of frequency response is given by 

2

2

2
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s
N
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s
N

H

T

T
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 
  
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  

  
 

                     (3.5) 

 

Where (x)NT is the Nth order chebyshev polynomial 

and is the stopband frequency. 

 

3.1 Designing Method 

Paper 1 

In designing and analysis of chebeyshev 

filter Lopez and Fernandez [6] give a chebyshev 

filter transfer function with improvement of delay 

response. The technique consists in the shifting of the 

nearest to origin maximum of frequencies but not 

modifying in the normalized edge frequency. 

Chebyshev filters phase variation depends 

upon the chebyshev polynomial order, that is, if the 

chebyshev filter has greatest polynomial order then 

filter gives the worst phase response. Using this 

technique Lopez et al give the improvement in the 

delay response of chebyshev filter. For this technique 

Lopez et al using equation (3.2) because they use 

normalized edge frequency c =1rad/sec. For 

finding the roots of (x)NT , they have to calculate 

the value of X such that (x)NT =0 and find the value 

of x. Now this value put into the chebyshev transfer 

function and find that no zeros at x=0. Now they 

modified the chebyshev polynomial such that 

(x)NT has a pair of zeros at the origin and edge 

frequency does not change. This change of variable 

consists in the shifting of the nearest root to origin at 

the same origin as two roots equal to zero.  

In short we conclude that for low orders 

filters the delay response will get considerably better 

after they made the proposed mapping. Additionally 

to this improvement, the gain response gives us the 

possibility to make an LC ladder realization t be 

equally terminated for even order function.  

 

Paper 2 

Another method to designing chebyshev 

filter is given by Hisham L. Swady [7]. Swady 

introduced a new generalized chebyshev filter- like 

approximation for analog filters. This analyse only 

for odd order filter. This work presents a general 

approach for analog filter designing for chebyshev- 

like approximation with odd order.In this approach 

chebyshev-like filter differ from classical chebyshev 

filter in the ripple factor which is not equal amplitude 

with classical one. 

In this method consider the general magnitude 

squared function of a low pass filter of order N 

(N=2n+1):- 

2

2 2

1
| (jw) |

1 (w )
F

P



                                 (3.6) 

Where 

              
2 2 1p

                                                   

Where p is the passband gain and is the minimum 

value of a |H( )|.This approach is equal to classical 

chebyshev filter authr satisfy the following condition: 

     

2 2(w ) 1P 
                          0<<w<<wp 

   
2 2(w ) 1P                            w>>ws 
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Swady approach depends on choosing 

p  |H( )|1 in passband and obtained a formula 

after server manipulations:- 
2max[P(w )] 1                                                 (3.7) 

For a special case with choosing 
2 2(w ) T (w)NP   

equation (3.5) becomes identical to magnitude 

squared function of the chebyshev filter. The value of 

n is determined from the stopband requirement that 

satisfy: 

|F(jw)| s  , w sw                                            (3.8) 

Where s and sw are the stopband tolerance and 

stopband edge frequency. By an analytical 

manipulation Equ(3.8) can be transformed into the 

following result: 
2

2

2

1
(w )

1

s

p

P












                                               (3.9) 

From the equ (3.7) and (3.9) calculate the 

filter parameters and pole location of the filter. 

From the observation it is clear that the new 

proposed approximation has non-equal ripple in 

passband and more flatness than chebyshev filter (as 

shown in fig) and improvement in time domain 

response can be observed. 

 
Fig.3.1: Passband performance of the proposed 

design filter (“A”) & the Chebyshev filters (“B”) 

 

Paper 3 

Another method of design a chebyshev filter 

is given by Sunil Bhooshan and vinay kumar [8]. 

They proposed a designing a 2-dimensional 

chebyshev non-recursive filter with linear phase for 

processing image. In this designing of filter pass band 

to stop band ratio is critical because they design for 

the side bands to be a certain amount lower than the 

pass band. 

To convert the 1D Chebyshev polynomial, 

defined in equation (3.2) and (3.3), to 2D they change 

the variable X into a new variable ρ, which represent 

the chebyshev polynomial in cylindrical coordinates 

system. Where 
2 2x y   . Now chebyshev 

polynomial can be represented in the form of new 

variable ρ a    
1( ) cos(Ncos )NT                 -

1<|ρ|<1                                                                (3.10) 
1( ) cos(Ncosh )NT            |ρ|>1             (3.11) 

By the use of special transformation ρ can be 

represented as 

0 cos( )
2

w
    -π ≤ w ≤ π                           (3.12) 

Where 0  is the maximum value of  ρ. From the 

equation (3.12) it is notice that as w varies from 0 to 

π, ρ will vary from 0  to 0 and vice versa. 

Therefore, they conclude that this transform converts 

the polynomial to low pass filter. if we wish to design 

a high pass filter from the polynomial than ρ can be 

represented as: 

0 sin( )
2

w
      -π ≤ w ≤ π                            (3.13) 

Now from equation (3.12) for low pass filter 

polynomial can be defined as: 
2 2

1

0( ) cos{Ncos ( )}
2

N

u v
T   

  -1<|ρ|<1 (3.14) 

2 2
1

0( ) cos{Ncosh ( )}
2

N

u v
T   

   |ρ|>1      (3.15) 

Where w=
2 2u v  is mapped onto a 2D plane of 

frequencies. Similarly, we can represent the 

polynomial for high pass filter. To realize this filter 

0 can be represented in term of order of filter and 

attenuation require for side bands.  
1

0 cosh(cosh / N)b                                 (3.16) 

Where N is the order of the filter and b is the absolute 

value of the attenuation and is defined by 
(   /20)10 attenuation in dBb                                       (3.17) 

They also defined the value of stop band 

frequency sw and pass band frequency pw as 

1 12cos [1/{cosh(1/ Ncosh )}]sw b       (3.18) 

            

1
1

1

cosh{(1/ N)cosh ( / 2)}
2cos

cosh(1/ N cosh )
p

b
w

b






 
  

 
                           

                                                                            (3.19) 

Now from this approach we can design a 2D 

linear filter with the help of chebyshev polynomial. 

They conclude that if the order of the filter increases 

than the transition band becomes sharper and sharper. 

In this approach no approximation involved, 
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computation time is less and it is easier to 

understand. 

 

3.2 Discussion 

In the first paper Lopez and Fernandez 

give the desigining of modified chebyshev filter by 

shifting the frequency near to origin. Due to this 

improvement in the delay response of the chebyshev 

filter but it is only for even order chebyshev filter. 

After that we discuss the paper of Hisham L. Swady 

where they give the designing of chebyshev filter by 

using analog filter. They used the magnitude 

response of low pass filter of order N and convert 

into chebyshev filter. Due to this technique we get 

the more flat response in the pass band frequency 

range but this technique is valid only for odd order 

chebyshev filters. After that we discuss the paper of 

Sunil Bhooshan and Vinay Kumar where they give 

the designing of a 2D chebyshev filter using the 1D 

chebyshev polynomials. It is very easy to design, no 

approximation involved and complexity is less. 

 

3.3 Comparison Table 

Paper Approach Strength Weakness 

Paper 

1 

Shifting the 

frequencies 

nearest to 

origin and 

not change 

in the cut-

off 

frequency 

Improvement 

in delay 

response 

Only for 

even order 

chebyshev 

filter 

Paper 

2 

use 

magnitude 

response of 

low pass 

filter and 

convert into 

chebyshev 

filter 

magnitude 

response 

Mangnitude 

response is 

more flat in 

pass band 

frequencies 

Only for 

odd order 

chebyshev 

filter 

Paper 

3 

Convert 1D 

chebyshev 

polynomial 

int 2D 

polynomial   

Complexity is 

less and no 

approximation 

involved 

 

Table 3.1:- Comparison Table of chebyshev filter 

desing 
 

IV. Notch Filter 
Notch filter [1] contains one or more deep 

notches. It has perfect nulls in its frequency response 

characteristics. Notch filters are very useful in many 

applications where the specific frequency 

components must be eliminated. For example, 

instrumentation and recording systems require that 

the power line frequency 60 Hz and its harmonics be 

eliminated. For creating a null in the frequency 

response of a filter at a frequency 0w , we simply 

introduce a pair of complex-conjugate zeros on the 

unit circle at an angle 0w . That is, 

             0

1,2

jw
z e


     

             (4.1) 

Thus the system function for an FIR notch filter is  

                 0 01 1

0(z) b (1 )(1 )
iw iw

H e z e z
     

                            
1 2

0 0(1 2cos )b w z z     

   (4.2) 

But in the FIR notch filter notch has a relatively large 

bandwidth, which means that other frequency 

components around the desired null are severely 

attenuated. To reduce the bandwidth of the null we 

introduce poles in the system function. Suppose that 

we replace a pair of complex-conjugate poles at 

                    0

1,2

jw
p re


    

      (4.3) 

The effect of poles is to introduce a resonance in the 

vicinity of the null and thus to reduce the bandwidth 

of the notch. The system function for the resulting 

filter is 

1 2

0
0 1 2 2

0

1 2cos
(z) b

1 2 cos

w z z
H

r w z r z

 

 

 


 

              (4.4) 

In addition to reducing the bandwidth of the 

notch, the introducing of a pole in the vicinity of the 

null may result in a small ripple in a pass band of the 

filter due to the resonance created by poles. The 

effect of ripple can be reduced by introducing poles 

and/or zeros in the system function of notch filter. 

 

4.1Designing Method 

Paper 1 

In designing and analysis of Notch filter Lee 

and Tseng [9] give the design of 2D notch filter 

using band pass filter and fractional delay filter. For 

designing of 2D notch filter decompose the filter into 

the 2D parallel-line filter and straight-line filter. 

Then, the parallel-line filter is designed by band pass 

filter and the straight-line filter is designed by 

fractional delay filter. The purpose of this paper is to 

establish the relation between 2D notch filter and the 

fractional delay filter such that 2D notch filter can be 

designed by using well-documented design method 

of fractional delay filter. 

The ideal frequency response of 2D notch filter is 

given by 

    
1 2(w , w ) 0D   , 

1 2 1 , 2(w , w ) (w w )N N   

                        =1,others                                       (4.5) 
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Where ( 1 , 2N Nw w ) is the notch frequencies. 

Now design a 2D filter 1 2(z , z )H which is 

approximate the 1 2(w , w )D . They choose the 

simple algebraic method to make the IIR notch filter. 

In the simple algebraic method, the design of 2D 

notch filter 1 2(z , z )H is decompose into 2D 

parallel-line filter 1 2(z , z )pH  and 2D straight-line 

filter 1 2(z , z )sH . The transfer function of 2D notch 

filter is given by 

1 2 1 2 1 2(z , z ) 1 (z , z ) (z , z )p sH H H                                    

(4.6) 

Where the parallel-line filter is 

1 2

2 1 2 2
1 2 1 2

1 2 2 2

1
(z ,z ) 1

2 1
p

a a z z
H

a z a z

 

 

  
  

  
                                    

(4.7) 

With the coefficients  

2
1

2cos(w )

1 tan
2

Na
BW


 

  
 

,  2

1 tan
2

1 tan
2

BW

a
BW

 
  

 
 

  
 

 

BW is a small positive number. Now for designing 

straight-line filter they used the analog inductance-

resistance network and bilinear transformed. 

           
1 1 1 1

1 2 1 2
1 2

1 1 1 11 2 1 2 1 2 1 2
1 2 1 2

1
(z , z )s

z z z z
H

R L L R L L R L L R L L
z z z z

R R R R

   

   

  


       
  

                                                                                     (4.8) 

Where the parameters are 

1

1

1

tan
2

N

L
w


 
 
 

,    2

2

1

tan
2

N

L
w




 
 
 

 

and R is a small positive number. For the bounded 

input/bounded output (BIBO) stability of the 2D 

notch filter, the parameters need to satisfy the 

constraints 1L > 0 and 2L > 0. This implies that notch 

frequency needs to satisfy the following condition:- 

                1 0Nw   and  2 0Nw   

The above constraints limit the applicability 

of notch filter. so they used the fractional delay filter 

to design the straight-line filter such that constraint 

can be removed. 

Now the proposed design method divides into 3 

following case: 

Case-1: when 1 2| | | w |N Nw  , then parallel-line 

filter is design by the 1D band pass filter. 

                  
21 2 1(z , z ) H (z) |p B z zH   

Where 1BH  is the 1D band pass filter. Moreover, the 

straight-line filter is given by 

1 2
1 2 2(z ,z ) H (z) |s B z z z

H 
  

Where 2BH  is another 1D band pass filter and 

2

1

N

N

w

w
   . Now put the value in the equation 

(4.6), the design notch filter is given by 

              
1 2 1

2 2 1 2
1 2 1 2 2 1

2 2 1 2

1 1
(z ,z ) 1 1 1

1 1

az z z z
H

raz r z rz z





   

   

    
     

    

      

                                                                              (4.9) 

Where r is the small positive number and 

22cos(w )Na   . 

Case 2: When 1 2| w | | w |N N , then parallel-line 

filter is design by the 1D band pass filter. 

                
11 2 1(z , z ) H (z) |p B z zH   

Where 1BH  is the 1D band pass filter. Moreover, the 

straight-line filter is given by 

                
1 2

1 2 2(z ,z ) H (z) |s B z z z
H 

  

Where 2BH  is another 1D band pass filter 

and
1

2

N

N

w

w
   . Now put the value in the equation 

(4.6), the design notch filter is given by 

              
1 2 1

1 1 1 2
1 2 1 2 2 1

1 1 1 2

1 1
(z ,z ) 1 1 1

1 1

az z z z
H

raz r z rz z





   

   

    
     

    

                                                                            (4.10) 

Where 2cos(w )Na  . 

Case 3: if 1 2N Nw w , then 2D notch filter is 

            
1 2 1

1 1 1 2
1 2 1 2 2 1

1 1 1 2

1 1
(z ,z ) 1 1 1

1 1

az z z z
H

raz r z rz z

  

  

    
     

    

               

                                                                            (4.11) 

And if 1 2N Nw w  , then 2D notch filter is 

           
1 2 1 1

1 1 1 2
1 2 1 2 2 1 1

1 1 1 2

1 1
(z ,z ) 1 1 1

1 1

az z z z
H

raz r z rz z

   

   

    
     

    

             

                                                                            (4.12) 

Where 2cos(w )Na  . This is designing of the 2D 

notch filter using band pass filter and fractional delay 

filter. This is the close form design, so it is easy to 

use. 

 

Paper 2 
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Another method of designing of notch filter 

is given by Tseng and Pei [10]. In this paper they 

represent the designing of 2D IIR Notch filter and 2D 

FIR Notch filter. They explain the 2D IIR Notch 

filter by simple algebraic method which we have 

discussed in the above paper and 2D FIR Notch filter 

explain by Lagrange method. FIR filter requires more 

arithmetic operation than IIR filter during 

implementation. 

A 2D linear phase FIR digital filter with transfer 

function 1 2(z , z )H  has a frequency response  

            

2 2

1 2 1 1 2 2 1 2

1 1

(mw nw )
(e ,e ) e (m,n)e

N N
iw jw jN w jN w j

m N n N

H e h
   

 

  

                                                                                   (4.13) 

Where the impulse response h(m,n) satisfy the half-

plane symmetrical condition, i.e. 

h(m,n) = h(-m,-n)                                                (4.14) 

After some manipulation it is easily shown that the 

magnitude response 1 2(w , w )G  of 1 2(z , z )H  is 

given by 

1 2 1 2

1

(w , w ) (i)g(w , w )
R

i

G a


                   (4.15) 

Where the dimension 

1 2 1(N 1) N (2 N 1)R     and 

1 2(m,n) cos(mw nw )ig                           (4.16) 

        (i) h(0,0) 1a i   

2 (m,n) 1h i                                             (4.17) 

They rewrite the 1 2(w , w )G in the following vector 

form 

1 2 1 2(w , w ) A (w , w )tG C                         (4.18) 

Where 

        

1 2 1 1 2 2 1 2 1 2

[ (1) (2)....a(R)]

(w , w ) [ (w , w ) (w , w )....g (w , w )]

t

t

R

A a a

C g g





  

They design 1 2(w , w )G to approximate the 

ideal notch filter frequency response in least square 

error sense. In this sense, the filter design problem 

formulated as follow: 

     

2

1 2 1 2

2

1 2 1 2

1 2

| (w , w ) 1|

| A C(w , w ) 1|

2 1

(w , w ) A 0

t

t t

t

N N

Minimize G dw dw

dw dw

A QA P A

Subjected to C

 

 

 

 

 

 



 

  



 

   

Where the positive definite symmetric matrix Q and 

vector P are given by 

1 2 1 2 1 2

1 2 1 2

(w , w ) (w , w )dw

(w , w )dw

tQ C C dw

P C dw

 

 

 

 

 

 





 

 
 

 

Therefore, the optimal solution is given by 
1 1 1 1

1 2 1 2 1 2 1 2[1 (w ,w ){C (w ,w )Q (w ,w )} (w ,w )]Qt t

opt N N N N N N N NA Q C C C P           

(4.19) 

Based on this discussion, they design a 2D 

FIR Notch filter with notch frequency 1 2(w , w )N N . 

They used this filter to remove the single sinusoidal 

interference superimposed on an image. For real-time 

processing purpose, the 2D notch filter is preferred. 

In 2D notch filter case, the notch frequency can be 

chosen exactly the same as the sinusoidal frequency, 

so there is nearly no information loss and notch filter 

technique is much more efficient than conventional 

FFT method in computational complexity. 

 

Paper 3 

Another method of designing of Notch filter 

is given by Shen et al [11]. In this paper based upon 

transfer function, they design a digital notch filter to 

eliminate the 50 Hz noise. The filter was realized by 

the software implementation in VC++ environment 

and simulated by MATLAB. After this process 

power-line interference removes effectively. Its 

operation was simple and applicable. 

According to given sampling frequency, the transfer 

function could be constructed as: 

50

1
(z)

1

s

s

f

f

z
H

z










                                              (4.20) 

Substituting 
jwz e  in equation (4.20) 

2 100

sin
2( ) e

sin
100

s s
sf f

jw
jw

s

wf

H e
wf

 
  

                       (4.21) 

In the digital domain the range of the frequencies is 

0 2w   and in analogue domain 0 sf f  , 

where sf is the sampling frequency.  

If f= sf  then 2w  , and | (e ) |jwH could simply 

express as: 

             
sin( f)

| (e ) |

sin
50

jwH
f




  
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And the phase shift 
2 100

s sf f
    

0 50. ( 0,1,2...)
| (jw) |

50 50. ( 0,1,2...)

f k k
H

f k k

  
 

  
 

The magnitude frequency characteristics shown in 

figure below, which was drawn in MATLAB.  

 
Fig 4.1:- Magnitude Frequency Characteristics of 

filter 

 

While passing through the transfer function, 

the series of signals could be demodulated with the 

frequency component. Notch filter could be obtained 

by taking the demodulated series from original series. 

According to transfer function, the differential 

equation would be calculated. 

Assuming that the original signal series was x(n) and 

demodulated signal series was y(n) 

(n) y (n) x(n f )
50

s
s

f
y n x

 
     

 
 

Then the band-stopped series (n)eR could be 

calculated as follow: 

(n) (n) x(n f )
2 100

2 100

s s
e s

s s

f f
R x n x

f f


  
       

  

 

 

 

The power-line frequency interference has 

been removed in series (n)eR . 

According to the principle of transfer 

function, the FIR notch filter was designed via 

software procedure in VC++. Through the specified 

x(n) and the differential equation f the notch filter, 

the demodulated series y(n) and (n)eR could be 

calculated.In this paper, the transfer function H(z) of 

digital filter can demodulated the frequency 

components that was integral multiple of 50 Hz. The 

experiment showed that the 50 Hz notch filter 

worked properly with stable and reliable 

performance. 

 

Paper 4 

Another design is presented by the 

Srisangngam et al [12]. This paper represents the 

design of symmetrical IIR Notch filter using pole 

position displacement.  It has modified the transfer 

function equation with the optimum pole positions 

for the symmetry of pass-band gain and transition-

band gain. First, they present the IIR Notch filter 

design then they present IIR Notch filter proposed 

design and finally simulates the result. 

Now the transfer of the IIR Notch filter is given by 
1 2

0
0 1 2 2

0

1 2cos
(z) b

1 2 cos

w z z
H

r w z r z

 

 

 


 
            (4.22) 

From this equation it is show that the angle 

of pole is the same as angle of zero. The simulation 

result of this method reveals the uncontrollable gain 

at frequency DC and π.  The constant for controlling 

the pass-band gain rate 0b is unknown because of 

this unknown constant asymmetric and 

uncontrollable pass-band gain at DC and π 

frequencies. Then they modified the pole angle and 

the result will be a transfer function of the IIR Notch 

filter as shown  
1 2

0
0 1 2 2

0

1 2cos
(z) b

1 2 cos( )

w z z
H

r w z r z

 

 

 


  
  (4.23) 

2

0
0

0

1 2 cos(w ) r

2 2cos

r
b

w

  



                        (4.24) 

2
1

0 0

1
cos cos

2

r
w w

r
   
   

 
                   (4.25) 

After changing the pole position of an IIR Notch 

filter, it could control the magnitude response at DC 

frequency and π frequency but it could not control 

transition-band gain. Therefore, the magnitude 

response of an IIR Notch filter is not symmetry. 

Now they add pole and zero to compensate 

magnitude of transition-band as shown in equation 

below 

0

1 2

0

1 2 2

1 0 1 3

1 2 2

2 0 2 2

1 2 2

3 0 3 3

ˆˆ (z) b (z) H (z)

1 2cos
H(z)

1 2 cos(w ) z

1 2 cos(w ) z
(z)

1 2 cos(w ) z

ADD

ADD

H H

w z z

r r z

r r z
H

r r z







 

 

 

 



 


  

  


  

 

Because of the zero position has no effect on the 

transition-band gain and pass-band gain. Thus, 2  

should be assigned as zero and 1 2 3r r r r   . 

The 1 3    is an angle of pole that will 

symmetrical with notch frequency in both positive 

and negative sides. 
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Where 
2 2

0 0
0 2

0 0

1 2 cos(w ) r 1 2 cos(w ) rˆ
2 2cos 1 2 cos

r r
b

w r w r

      


  

 

The magnitude response of propose IIR 

Notch filter could control the pass-band gain and 

transition-band gain. Because of distance from zero 

position of each side are equal. Then, the magnitude 

response of an IIR Notch filter is symmetry. In 

conclusion, the proposed method for the design of 

IIR Notch filter by modifying the pole position can 

ensure the symmetry of pass-band and transition-

band gain at the target level.  

 

4.2 Discussion:- 

In paper 1 Lee and Tseng give the design of 

2D notch filter using band pass filter and fractional 

delay filter and using simple algebraic method they 

design a IIR Notch filter. Due to this technique they 

remove the sinusoidal interferences corrupted on a 

desired signal and it is closed-form design, so it is 

easy to use but they explain only for 2D Notch filter 

not discuss the 3D notch filter design using same 

method. In paper 2 Tseng and Pei presents the 

designing of 2D IIR Notch filter and 2D FIR Notch 

filter. They explain the 2D IIR Notch filter by simple 

algebraic method 2D FIR Notch filter explains by 

Lagrange method. We observe that FIR filter requires 

more arithmetic operation than IIR filter during 

implementation and they also could not explain the 

3D notch filter design using same method. In paper 3 

Shen et al based upon transfer function design a 

digital notch filter to eliminate the 50 Hz noise. The 

filter was realized by the software implementation in 

VC++ environment and simulated by MATLAB. 

After this process power-line interference removes 

effectively. Its operation was simple and applicable. 

In paper 4 Srisangngam et al represents the design 

of symmetrical IIR Notch filter using pole position 

displacement. Magnitude response of an IIR Notch 

filter is symmetry and by modifying the pole position 

can ensure the symmetry of pass-band and transition-

band gain at the target level. 

 

4.3 Comparison Table:- 

Paper Approach Strength Weakness 

Paper 

1 

Using 

simple 

algebraic 

method 

design a 

IIR Notch 

filter 

Remove the 

sinusoidal 

interference

s corrupted 

on a 

desired 

signal and 

it is closed-

form 

design, so it 

only fixed 

2D notch 

filter  not 

discuss the 

3D notch 

filter design 

using same 

method 

is easy to 

use. 

Paper 

2 

2D FIR 

Notch 

filter 

explain by 

Lagrange 

method. 

For real-

time 

processing 

purpose, 

the 2D 

notch filter 

is preferred 

and no 

information 

loss and 

notch filter 

technique is 

much more 

efficient 

than 

convention

al FFT 

method in 

computatio

nal 

complexity. 

FIR filter 

requires 

more 

arithmetic 

operation 

than IIR 

filter during 

implementati

on and only 

fixed 2D 

notch filter  

not discuss 

the 3D notch 

filter design 

using same 

method 

Paper 

3 

Based 

upon 

transfer 

function 

design a 

digital 

notch filter 

to 

eliminate 

the 50 Hz 

noise with 

the help of 

software 

implement

ation in 

VC++ 

environme

nt and 

simulated 

by 

MATLAB 

 Power-line 

interference 

removes 

effectively. 

Its 

operation 

was simple 

and 

applicable. 

 

 

Paper 

4 

Design of 

symmetric

al IIR 

Notch 

filter using 

pole 

position 

displacem

ent 

Magnitude 

response of 

an IIR 

Notch filter 

is 

symmetry 

and by 

modifying 

the pole 

position 

can ensure 

the 

symmetry 
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of pass-

band and 

transition-

band gain 

at the target 

level. 

 

      Table 4.1: Comparison table of Notch Filter 

Design 

 

V. COMB Filter 
Comb filter [1] is a type of notch filter in 

which nulls occurs periodically across the frequency 

band, hence comb has periodically space teeth. Comb 

filters are use in a wide range of practical systems 

such as in the rejection of power-line harmonics, in 

separation of solar and lunar components from 

ionospheric measurements of electron concentration. 

To illustrate a simple form of a comb filter, consider 

a moving average (FIR) filter describe by the 

difference equation 

0

1
(n) (n k)

1

M

k

y x
M 

 

  

The system function of the FIR filter is 

0

1
(z)

1

M
k

k

H z
M







  

And its frequency response is 

2

1
sin

2
(w)

1
sin

2

Mjw

M
w

e
H

wM



 
 
 

  
 
 

 

From the above equation we observe that the 

filter has zeros on the unit circle at 
2

1, 1,2,3.....,
kj

Mz e k M


   

Note that the pole at z=1 is actually cancelled by the 

zero at z=1, so that in effect the FIR filter does not 

contain poles outside z=0 [1]. 

 

5.1 Designing Method 

Paper 1 

For designing of Comb filter Makarov and 

Odda [13] present a paper. In this paper the second 

order COMB filter is consist of two conventional 

COMB filter in cascade. The purpose of this paper is 

to simulate this type of filter by using delta 

modulation (DM) technique which gives the 

realization low cost, simplicity and an efficient result 

in real time processing. After that the suggested 

structure has been simulated through an appropriate 

computer program to achieve the desired frequency 

response. This structure is based on DM as analog to 

digital converter (ADC) for continuous input signal. 

The second order COMB filter is:  

1(nT) x(nT) 2 x(nT NT) x(nT 2 NT)y     

                                                                              (5.1) 

Where, x is the discrete sequence obtained from the 

input signal sampled at time (nT), T is the sampling 

interval, y is the output sequence and (NT) is the time 

interval of the delay.  Taking the z-transform of 

equation (5.1), then we get                                          

2 21
1

(z)
(z) 1 2 (1 z )

(z)

N N NY
H z z

X

                                             

                                                                              (5.2) 

This transfer function has (2N) zeros. Each double 

zeros are equally spaced around the unit circle in the 

z-plane at location given by: 
2 / , 0,1, 2....(N 1)j k N

kz e k    

The frequency response of the filter is: 
2

1(e ) (1 e )jwT jwNTH     

Thus, 

1| (e ) | 2(1 cos(wNT))jwTH     

Which means that zeros occur at the frequencies that 

are integral multiple of ( / N)sf Hz and sf is the 

sampling frequency. 

Now, if in equation (5.2), the subtraction is replaced 

by addition, the transfer function becomes 

2 21
2

(z)
(z) 1 2 (1 z )

(z)

N N NY
H z z

X

                              

                                                                              (5.3) 

Thus, there are double zeros equally spaced around 

unit circle at 
2 ( 0.5)/ , 0,1, 2....(N 1)j k N

kz e k     

And the frequency response becomes 

2| (e ) | 2(1 cos(wNT))jwTH     

In this case zeros occur at the frequencies 

that are integral multiple of ( / 2 N)sf Hz. 

Now, they represent the conventional 

COMB filter through cascade both transfer function 

and together with DM are cascade with conventional 

filter. This is the suggested structure given by them. 

DM is cascaded with conventional filter’s structure in 

order to convert the analog input signal into uni-bit 

digital waveform. 

Now, the simulated model for second order 

COMB filter computer program is operated by 

reading the parameters of the filter and DM. The 

Mean Squared Error (MSE) is calculated to 

investigate the performance of suggested structure 

according to different values of hysteresis width of 

DM and timing factor of program processing. MSE is 

defined as follow: 

/2
2

1

2
( (f) H (f))

sf

d s

fs

MSE H
f 

 
  
 

  

Where (f)dH and H (f)s are the desired and 

simulated frequency response respectively. 
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In this paper, they constructed and designed 

of second order filter using computer simulation. 

This design simplifies the structure of this filter using 

DM as analog to digital converter for input signal. 

The simulation results are obtained that MSE 

decrease by increasing clock-frequency and 

decreasing hysteresis width of DM. 

 

Paper 2 

Another method of designing of COMB 

filter is given by J. L. Rasmussen [14]. One 

application of the COMB filter is to remove of the 

fundamental sinusoidal signal and its harmonics from 

a signal of interest (SOI). In this condition, it is not 

feasible to use simple IIR or FIR filter to remove 

these interfering signals without significant 

degradation of SOI. In this case, we can use the FFT 

COMB filter to remove these interfering signals but 

the FFT method has not often used because of its 

computational complexity. In this paper they present 

a new formulation of the FFT COMB filter that 

eliminates all limitation of the FFT method and 

provides advantages over the IIR or FIR COMB 

filter. 

In earlier method of FFT COMB filter 

collect the N samples of data, performing an FFT on 

this data, zeroing every 
thM  value of the resulting 

data, and then performing IFFT to obtain the time 

domain filtered result.  The FFT and IFFT both take 

order 2logN N  multiplications or 22 logN N  

multiplications for whole process. Due to this process 

computational complexity increases. There is another 

problem in FFT COMB filter if we want to extend 

this method to larger bandwidth. First, we assume 

that the original FFT frequency resolution must be 

maintained. Under this constraint, if the SOI 

bandwidth is increased, both sampling frequency 

sf and N need to be increased. Thus, the FFT size 

has increased. The FFT/IFFT processing time is also 

increased. 

For solving the above problem of FFT 

COMB filter they give the new design of FFT COMB 

filter. They use the FFT and IFFT matrix 

multiplication process to simplify the above 

problems.  It observe that if N and M are choose such 

that N/M is an integer, the product of the IFFT matrix 

with the FFT matrix with every 
thM rows zeroed 

produces a sparse, multi-diagonal structure. Let A 

and 
1A

be the size N FFT and IFFT matrices. A is 

given by 

1 (N 1)

(N 1) (N 1)(N 1)

1 1 ... 1

1 ...1

1 ...

N N

N N

W W

N

W W



  

 
 
 
 
 
 

   
 

Where 

2
j

N
NW e




  

Zeroing every 
thM value of the result of 

multiplying the FFT matrix times the input, x, is 

equivalent to multiplying the input vector by a 

multiplication of the FFT matrix with every 
thM row 

zeroed. Let rA be the FFT matrix with every 
thM  

row zeroed. Thus, rA  is given by                                                                                                     

1 (N 1)

2 2(N 1)

(N 1) (N 1)(N 1)

0 0 ... 0

1 ...

1 ...
1

0 0 ... 0

1 ...

N N

N N

N N

W W

W W

N

W W





  

 
 
 
 
 
 
 
 
 
 
 

   

   

 

Let rC  be the result of multiplication, 

1

r rC A A                                                        (5.4) 

rA can also be represented as the matrix (A- eA ), 

where eA is the matrix A with all its rows zeroed out 

except the first row and every 
thM  row. Then from 

equation (5.4) 
1(A A )r eC A      

1

eI A A                    (5.5) 

Since only every 
thM element of the 

columns of eA is non-zero, the summation is only 

over 0 to (N/M-1). The elements of matrix 
1

eA A
are 

sums of N/M products and can be expressed as 

             1

1
mod(i j, ) 0

0
e

N
n

A A M M

otherwise



 
   

  
 
 

 

Then, the 
thij  element of 

rC is

1
1

1
(ij) mod(i j, ) 0,and

0

r

i j

M

N
C n i j

M M

otherwise

 
 

 
 

      
 
 
 
 

             

(5.6) 

Thus, a multi-diagonal matrix results with 2M-1 

diagonal, include the main diagonal. If the input 

vector, x, is multiplied by this matrix, then in general 

the result for the 
thk output is 
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1

0

1
ˆ

M

k k Nj k j
M

x x x
M



 
                                 (5.7) 

For k equal 0 to N/M-1. Because of the cyclic nature 

of the matrix rC , only the first N/M outputs need to 

be calculated as in equation (5.7). The rest of the (N-

N/M) outputs can be calculated using the first N/M 

outputs as 

mod(k, ) mod(k, )
ˆ ˆ

k N k N
M M

x x x x                        (5.8) 

For k equal N/M to N. 

From this method the total number of 

multiplications reduces to N/M. Thus, this method of 

implementation COMB filtering is a factor of 

22 logM N more efficient than the FFT method. 

This simplified method solves some of problems that 

were identified. First, computation time has been 

reduced. Second, there is no restriction that a radix 2 

value for the size of the FFT must be used. The only 

restriction is that N/M must be an integer. There is 

still requirement that all N samples must be collected 

before the output can be obtained. The time involved 

might be too large for some Time Division Multiple 

Access or network systems. It can be implemented as 

an FIR filter. Now, its computational complexity is 

reduce so we can use this filter is to remove of the 

fundamental sinusoidal signal and its harmonics from 

a SOI. 

 

Paper 3 
Another method of designing a COMB filter 

is given by Gordana Jovanovic Dolecek [15]. This 

paper presents the design of the 2 stage COMB based 

decimation filter with a very low wideband pass band 

droop and a high stop band attenuation of the overall 

filter. In this paper they used polyphase 

decomposition method to stage 1 to avoid the 

filtering at the high input rate. Then, they applied the 

compensation filters for both stages and sharpening 

technique is applied in the 2 stage to the cascade of 

comb filter and the compensation filter.  

The comb filter must have a high alias 

rejection around the zeros of comb filter and a low 

pass band drop in the pass band in order to avoid the 

distortion of the decimated signal. However the comb 

filter has a high pass band droop and low folding 

band attenuation. So the main goal of this paper is to 

decrease the pass band droop and keeping good stop 

band attenuation. In this paper first, they describe two 

stage structures, then introduce the compensation 

filter and finally give the proposed filter. 

For two stage structure they consider the case where 

the decimation factor M can be presented 

as 1 2M M M . The corresponding comb-based 

decimation filter is given as 

              1 1 2

1 2(z) [H (z)] [ (z )]
k M k

H H                                            

(5.9) 

Where 

           

1

1 2

1

1

1 1

1

2

2

1 1
(z) ;

1

1 1
(z )

1

M

M M
M

M

z
H

M z

z
H

M z



















                                                   

(5.10) 

The choice of 1M is a matter of the compromise 

between having less complex polyphase components 

in the first stage, and making the filter in the second 

stage working at, as much as possible lower rate. For 

this condition they proposed that the factors 1M and 

2M are close in values as much as possible to each 

other, with 1 2M M . 1k and 2k  are the number of 

cascade comb filters at first and second sections 

respectively. The filter in the first section is realized 

in the non recursive form, 

           

1
1

1

1

1

01

1
(z)

k
M

k i

i

H z
M






 
  
 

                     (5.11) 

Using ployphase decomposition, the filters of the first 

section can be moved t operate at a lower rate.Two-

stage structure is shown in figure 

                                                                                                                                                                                                                       

 

  

                                                 

 

  

 

                           

 

 

 

 

Fig 5.1:- Two-Stage Structure 

 

Now, they try to improve the pass band 

characteristics of the overall structure. To improve 

the overall pass band characteristics, they propose to 

use compensation filters: 

1 1 1 112

1(z ) [B(1 Az )]
M M M k

G z
 

               (5.12) 

222

2 (z ) [B(1 Az )]
kM M MG z                  (5.13) 

Where the parameters 11k and 22k  are related with 

the parameters 1k and 2k , and 

4

4

2

[2 2]

B

A

 

  
 

1
1

1

1

1

01

1
(z)

k
M

k i

i

H z
M






 
  
 

  

1M
 

2

2

k
H

 

2M  
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The compensation filters (5.12) and (5.13) 

have many favourable characteristics such as 

parameters B and A equal in both compensators, and 

do not depend on M and 1M , filters are multiplier 

less, and can be moved to a lower rate but the number 

of cascade filters 11k and 22k depend on 1k and 2k . 

The two-stage structure with the compensators is 

shown in figure below 

           

                    

                    

                                        

 

 

 

 

 

 

Fig 5.2:- Compensated two-stage structure 

 

For proposed structure they apply the 

sharpening technique to the cascaded filters 2

2

k
H  and 

the compensator 2

2 (z )
M

G , at the second stage. 

2 2

2 2 2(z) (z) (z )
k M

cH H G                             (5.14) 

In the sharpening technique they used the simplest 

sharpening polynomial in the form of 
22H H  

2

2 2 2{ (z)} 2H (z) H (z)c c cSh H    

2 2(z)[2 z (z)]c cH H                                (5.15) 

Where, {x}Sh  means sharpening of x. The delay τ 

is introduced to keep the linear phase of the filter. 

The overall proposed transfer function is 

1 1 2 1

1 1 2 2(z) H (z)G (z )Sh{H (z )G (z )}
k M k M M

pH 

                                                                            (5.16) 

 

The corresponding structure is shown in figure below 

     

 

 

 

 

 

 

 

 

 

Fig 5.3:- Proposed Filter 
 

This is the two-stage compensated 

sharpened COMB based decimator. The important 

features of the proposed filter are multiplier less 

structure and the design parameters are practically do 

not depend on the values of 1M and 2M . In the 

proposed design of the 2 stage COMB based 

decimation filter wideband pass band droop is very 

low and stop band attenuation is high of the overall 

filter. 

 

5.2 Discussion:- 

In paper 1 Makarov and Odda give the 

designing of second order COMB filter using delta 

modulation which gives the realization low cost, 

simplicity and an efficient result in real time 

processing. After that the suggested structure has 

been simulated through an appropriate computer 

program to achieve the desired frequency response. 

This structure is based on DM as analog to digital 

converter (ADC) for continuous input signal. In 

paper 2 J. L. Rasmussen gives the new method of 

designing a FIR COMB filter. They present a new 

formulation of the FFT COMB filter that eliminates 

all limitation of the FFT method and provides 

advantages over the IIR or FIR COMB filter. They 

design a COMB filter using FFT and IFFT matrix 

multiplication process. Due to this technique 

computational complexity is reduced and there is no 

restriction that a radix 2 value for the size of the FFT 

must be used but there is some restriction. N/M must 

be an integer, there is still requirement that all N 

samples must be collected before the output can be 

obtained and the time involved might be too large for 

some Time Division Multiple Access or network 

systems. In paper 3 Gordana Jovanovic Dolecek 

gives the designing of cascade comb filter. Using 

polyphase technique, compensation filter and 

sharpening technique they design a cascade comb 

filter. Due to this technique there are some 

advantages. We need amultiplier less structure and 

the design parameters are practically do not depend 

on the values of 1M and 2M but there is a one 

disadvantage that is number of cascade filters 11k and 

22k depend on 1k and 2k . 

 

5.3 Comparison Table:- 

Pape

r 

Approach Strength Weakness 

Paper 

1 

simulate 

second order 

COMB filter 

by using 

delta 

modulation 

(DM) 

technique  

low cost, 

simplicity and 

an efficient 

result in real 

time 

processing 

 

Paper 

2 

Using FFT 

and IFFT 

matrix 

Computationa

l complexity 

is reduced 

N/M must 

be an 

integer, 

1

1 (z)
k

H  
1M  

2 2

1 2 2(z)G (z ) H (z)
M k

G

 

2M  

1
1

1

1

1

01

1
(z)

k
M

k i

i

H z
M






 
  
 



 

1M
 

1G (z)
 

2 1

2 2Sh{H (z )G (z )}
k M M

 

2M
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multiplicatio

n process to 

design a 

COMB filter 

and there is 

no restriction 

that a radix 2 

value for the 

size of the 

FFT must be 

used. 

there is still 

requiremen

t that all N 

samples 

must be 

collected 

before the 

output can 

be obtained 

and the 

time 

involved 

might be 

too large 

for some 

Time 

Division 

Multiple 

Access or 

network 

systems. 

Paper 

3 

Using 

polyphase 

technique, 

compensatio

n filter and 

sharpening 

technique to 

design a 

cascade 

comb filter 

Multiplier 

less structure 

and the 

design 

parameters 

are practically 

do not depend 

on the values 

of 1M and 

2M . 

Number of 

cascade 

filters 

11k and 

22k depen

d on 

1k and 2k . 

 

Table 5.1:- Comparison table of COMB filter 

desing 

 

VI. Bessel Filter 
Bessel filters [1] are a class of all-pole filters 

that are characterized by the system function 

1
(s)

(s)N

H
B

                                                    (6.1) 

Where (s)NB is the Nth-order Bessel polynomial. 

These polynomials can be expressed in the form 

0

(s)
N

k

N k

k

B a s


                                                (6.2) 

Where the coefficients { ka } are given as 

(2 N k !

!(N k)!

)

2
k N k

a
k 


           k=0,1,.....,N           (6.3) 

Alternatively, the Bessel polynomial may be 

generated recursively from the relation 
2

1 2(s) (2 N 1) B (s) s (s)N N NB B             (6.4) 

With 0 (s) 1B  and 1(s) s 1B   as initial 

conditions. 

An important characteristic of Bessel filters 

is the linear-phase response over the pass band of the 

filter. Bessel filter has a larger transition bandwidth, 

but its phase is linear within the pass band. 

 

6.1 Designing Method 

Paper 1 

Johnson et al present [16] the new 

designing method of Bessel filter. They used the 

continued fraction to obtain the transfer function of 

Bessel filter is modified by adding a parameter a > -1 

to the odd integers in the expansion. The resulting 

transfer function is realizable and has a time delay at 

w=0 which is independent of the order of the filter, 

and which may be varied from 0 to ∞ by changing α. 

So first we will discuss about the modified transfer 

function and then discuss about the time delay.  

The transfer function of generalized Bessel filter is 

(0)
(s) , 1

(s)

a
a n
n a

n

B
H a

B
                                  (6.5) 

Where 

(s) M (s) N (s)a a a

n n nB    

M (s)a

n and N (s)a

n are the even and odd part 

obtained from the continued fraction expansion 

(s) 1 1
(s)

3 1(s)
1

2 1

a
a n

n a

n

M a
F

aN s

s
a n

s


  





 



 

                                                                         (6.6) 

When a=0, (s)nB is obtained i.e. 
0(s) B (s)n nB  . 

(s)a

nB is Hurwitz if and only if a≥-1. 

To obtain the expressions for
a

nB , from 

equation (6.6) note that 

2

1

1 1
(s)

(s)

a

n a

n

a
F

s F 




   

From which we obtain 
2 2

1 1

2

1

2 2

1 1

2

1

(a 1) M

(s) (a 1) M (s) sN (s)

N (s) sM (s)

a a a

n n n

a a

n n

a a a

n n n

a a

n n

M sN

N sM

or

M

 

 





 

 





 


  



 

Therefore we may write 
2 2

1 1B (s) sB (s) (a 1) M (s)a a a

n n n

 

                    (6.7) 
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Or, since 
2

1Ma

n



 is the even part of
2

1Ba

n



 , we have 

2 2 2

1 1 1

1
(s) B (s) B ( s)

2

a a a

n n nM   

  
      

And therefore 

2 2

1 1

(2s a 1) (a 1)
B (s) B (s) B ( s)

2 2

a a a

n n n

 

 

  
                       

                                                                              (6.8) 

From equation (6.8) 

0

B (s) ,
n

a k

n k

k

A s


        n=1,2,3.....                     (6.9) 

A list of the kA  for various value of n is given in 

Table 6.1, where they define 

, 1,2,3...i a i i                                    (6.10) 

 

N 
nA  1nA   2nA   3nA   4nA   5nA   

1 1 
1      

2 1 
3  1 3      

3 1 
32  3 5   1 3 5      

4 1 
52  3 53   3 5 7    1 3 5 7      

5 1 
53  5 73   3 5 74    3 5 7 9     1 3 5 7 9      

Table 6.1:- Coefficient of 
a

nB  

 

The modified Bessel filter having transfer 

function (6.5) does not have maximally flat time 

delay, except in the case a=0 of the Bessel filter. 

However, by keeping a near 0, one may retain 

approximately the desirable phase properties of the 

Bessel filter while obtaining a variety of amplitude 

response.  

By varies ‘a’ from 0 to in one direction or the other, 

observe the time delay of Bessel filter. Let us 

consider the time delay (w)a

nT of the modified 

Bessel filter at w=0. So, 

'(w) (jw)
(w) Re

(jw)

a

n

d H
T

dw H

  
     

 
 

Where 
' (jw)H  represent differentiation with 

respect to (jw) and since both 
' (jw)H and 

(jw)H are real at w=0, then 

'
'(0)

(0) (0)
(0)

a

n

H
T H

H
     

Because H (0) 1a

n  . Therefore, 

0(0) (s) |a a

n n s

d
T H

ds
   

 

From equations (6.5) and (6.9) is given by 

1

0

(0)a

n

A
T

A
                                                      (6.10) 

By equation (6.7) and (6.9), 1A  is equal to
2

1 (0)a

nB 

 . 

But from (6.8), 
2

1 (0)a

nB 

  is equal to
(0)

(a 1)

a

nB


, 

which is turn is 0

(a 1)
A


. Substituting this 

expression for 1A  into equation (6.10) 

1
(0)

1

a

nT
a




                                                 (6.11) 

Thus the time delay at w=0 is independent of n, as in 

the case of Bessel filter. Also they note that if -1 < a 

< 0, then 1 <  (0)a

nT  < ∞, and if a > 0 then 0 < 

(0)a

nT  < 1. The dividing line is the case of Bessel 

filter a = 0, in which case (0)a

nT =1. 

The modified Bessel filter transfer function is a 

realizable function which reduces to that of the 

Bessel function when the parameter ‘a’ is zero. The 

time delay of the modified Bessel filter at w=0 is 

independent of the order of the filter and can be 

varied from 0 to ∞ by changing the parameter ‘a’. 

 

Paper 2  
Another method of designing a Bessel filter 

is given by Johnson et al [17]. They present an 

extension of the Bessel filter where transfer function 

is a rational function with finite zeros. They combine 

the constant magnitude response of the all-pass filter 

with the linear phase response of the Bessel filter. 

This paper presents an extension to the Bessel filter 

based on interesting approximation suggested be 

Budak [18]. 

Budak’s approximation is obtained by considering 

the ideal normalized transfer function 
se

 in the 

form 

(k 1)
, 0

ks
s

s

e
e k

e




 
                                    (6.12) 

When the Bessel filter transfer function is used to 

independently approximate 
kse

and
(k 1)se 

, the 

Bessel rational filter approximant results, given by 

         

(0) B [(k 1)s]
(s) , , 1, 2,...,

(0) B (ks)

s k n m
mn

m n

B
e H m n m n

B

 
  

                                                                                   (6.13) 
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When k=1 equation (6.13) becomes equal to equation 

(6.1). For 0 < k < 1, equation (6.13) becomes 

nonminimum phase function and for k 1 , it is a 

minimum phase function. 

Now, they obtained the time delay from that of the 

denormalized Bessel filter 

arg (j w) [1 f ( w)]n n

d
B

dw
     

Where 

2 2

1 1
2 2

2
f (w)

[ (w) j (w)]
n

n nw j   




 

And 
 1

2
n

j


 are the spherical Bessel function. For 

the normalized Bessel filter, the time delay is given 

by 

(w) 1 f (w)n nT                                              (6.14) 

And for the normalized Bessel rational filter, the time 

delay is given by 

(w) 1 (kw) (1 k) f [(1 ) ]k

mn n mT kf k w        

                                                                            (6.15) 

From (6.15) and the MacLaurin series for (u)nf , 

given by 
2

2 2 2 4
2

2

2 2(n 2) u
(u) ...

(2n) 2 1 (2n 1

!

! ) (2n 3)

n n n
n

n

n u
f u

n

    
      

     
 

They notice that the Bessel rational filter has 

maximally flat time delay in the case where a) k=1 

(normalized Bessel Filter), b) m=0 (denormalized 

Bessel Filter), and c) m=n. There is an another 

important case of (6.13) where m=n and k=0.5, which 

is an all-pass filter with maximally flat time delay 

given by 
1

2 (w) 1 f ( )
2nn n

wT                                        (6.16) 

From (6.14) it is note that the all-pass time delay is 

related to the Bessel filter by  
1

2 (w)
2nn n

wT T . 

Therefore, the time delay of the all-pass filter is flat 

for approximately twice the frequency range as that 

of the Bessel filter of same order. 

From the equation (6.2) Bessel polynomial can be 

defined by 

0

(2n i !)
(s)

(n ) i!2 !

n

n n

i

i
i

s
B

i






                               (6.17) 

By using (6.17) it is interesting to note that 

  !(2n)
(s)

2 2 !
n nn

sB P
n

  

Where 

                  
0

P (s)
(2 n)

!(2 n i)!

!(n i)! !

n

n

i

is

i

n







  

Thus for the special case, the Bessel rational filter 

can be written as 

                    
1

2
( s)

(s)
(s)

n
nn

n

P
H

P


  

Which is the (n,n) Pade [19] approximate of 

the function 
se

. 

So, in this paper they used to Budak’s and Pade 

approximate to design a transfer function of Bessel 

rational filter. They also combine the constant 

magnitude response of the all-pass filter with the 

linear phase response of the Bessel filter. Due to this 

they note that the time delay of the all-pass filter is 

flat for approximately twice the frequency range as 

that of the Bessel filter of same order. 

 

Paper 3  
Another method of designing a Bessel filter 

is given by Susan and Jayalalitha [20].  In this 

paper, they simulate the passive component L using 

Generalized Impedance Converter (GIC). This 

simulated inductor is applied for the realization of 

Bessel filter. The circuit simulation is done using 

PSPICE.  The use of passive component such as 

inductor in analog circuit is very difficult at low 

frequencies because the size of the inductor becomes 

very large. Due to this reason they simulate the 

inductor and then this inductor used for realization of 

Bessel filter. 

For simulating the inductor they used the GIC. They 

obtained the simulated inductor circuit from the GIC 

which consists of the active component the 

operational amplifier along with the capacitor. The 

GIC invented by Antoniou is given in figure (6.1).  
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Fig 6.1:- Antoniou 

 

Circuit 

The input impedance with respect to ground is 

1 3 5

2 4

Z Z Z
Z

Z Z
                                                      (6.18) 

Where 

1 1 2 2 3 3 4 4 5 5, , , ,CZ R Z X Z R Z R Z R      

then, 

1 3 5 2

4

sR R R C
Z

R
                                               (6.19) 

This is equivalent to an inductor. The value of L is 

                  
1 3 5 2

4

R R R C
L

R
  

If 1 3 5 4R R R R R     and 2C C then 

2L CR                                                            (6.20) 

 

From this procedure they obtained the value 

of simulated inductor. Now this value of simulated 

inductor they used to design of Bessel filter. 

For simulation of Bessel filter they replaced 

the inductor L in the low pass filter by the simulated 

inductor as shown in fig (6.2) and the frequency 

response obtained using PSPICE is given in fig (6.3). 

 
Fig 6.2:- Circuit Diagram of LPF with Simulated 

L 
    

                                                               

 
            Fig 6.3:- Frequency Response of Low Pass 

Filter 

Similarly to design a Bessel filter they replaced the 

inductor L in the basic circuit of the high pass and 

all-pass filters by the simulated inductor as shown in 

fig (6.5) and (6.6). The frequency response obtained 

using PSPICE is given in fig (6.7) and (6.8). 

 
Fig 6.5:- High Pass Filter using Simulated L 

 

 
Fig 6.6:-  All-Pass Filter using Simulated 
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Fig 6.7:- Frequency Response of High Pass Filter 

 

 
Fig 6.8:- Frequency Response of All-Pass Filter 

 

In this paper first they obtained the 

simulated inductor using GIC then design of Bessel 

filter from the low pass, high pass and all-pass filter 

with the help of simulated inductor. 

 

Paper 4 
Another method for designing Bessel filter 

is given by Chengyun et al [21]. In this paper a 

method for the design of digital Bessel filter is 

presented. It is based on MATLAB function besselap 

and zp2sos to obtain the Bessel polynomials. They 

obtain the analog filter transform function (s)aH  by 

search N-th order normalized Bessel polynomials. 

Then, transform (s)aH  into H(z) using the bilinear 

transformation and obtain the general coefficients 

function of digital Bessel filters from H(z). 

MATLAB provides a function called bilinear to 

implement this mapping. This mapping is the best 

transformation method named as bilinear 

transformation. To get the Bessel polynomials they 

used the following MATLAB function 

[z,p,k]=besselap(N)    % N-th order normalized 

prototype Bessel analog low pass filter 

[sos,g]=zp2sos(z,p,k)  %Zero-pole-gain to second 

order section model conversion 

Using this MATLAB code they obtained polynomials 

factors as shown in table 6.1 

 
 

Filter 

Order 

 

' ' ' '

1 2 3 4'(p) B (p) B (p) B (p) B (p)D   Polynomials Factors 

1 (p+1) 

2 
(

2p +1.7321p +1) 

3 
(

2p + 1.4913p + 1.0620)(p + 0.9416) 

4 
(

2p + 1.3144p + 1.1211)(
2p + 1.8095p + 0.8920) 

5 
(

2p + 1.1812p + 1.1718)(
2p + 1.7031p + 0.9211)(p + 0.9264) 

Table 6.1:- N-order normalized polynomials of 

Bessel 
 

In designing of Bessel digital filter, first they 

design the Bessel digital low pass filter. For this they 

obtained the N-th order normalized Bessel analog 

low-pass filter transfer function from table 6.1  

'

1
(p)

(p)N

G
D

                                                (6.21) 

Then they obtained the N-th order Bessel order 

analog low-pass filter transform function by 

removing normalization of equation (6.21) 

(s) (p)
c

sa p
H G




                                       (6.22) 

Where c is pass band cut-off frequency in rad/sec. 

Now, they transform (s)aH into H(z) using the 

bilinear transformation. They obtained 

1

1

1 2

0 1 2
2 1

1 2
1 1 0 1 2

(z) (s)
M

k k k
za s

T z k k k k

b b z b z
H H

a a z a z




 


 

 

 
 

 


                                                                           (6.23) 

 

Any multi-order Bessel filter can be 

designed by using normalized Bessel polynomials 

presented in Table 6.1. The general form of the first 

order polynomial is: 

'(p) p dD                                                     (6.24) 
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From equations (6.21), (6.22) and (6.23) they obtain 

relevant digital filter coefficients B, A 

(where [ 0, 1, 2], [ 0, 1, 2]B b b b A a a a  ): 

, ,0
1 1

c c

c c

B
d d

  
  

    
                         (6.25) 

1
1, ,0

1

c

c

d
A

d

  
  

  
                                      (6.26) 

Now, they consider the general form of second order 

polynomial is; 
2'(p) pD kp c                                           (6.27) 

Again from equations (6.21), (6.22) and (6.23) they 

obtain relevant digital filter coefficients B, A: 

      

2 2 2

2 2 2

2
, ,

1 1 1

c c c

c c c c c c

B
k c k c k c

   
  

            
                                                                                   (6.28) 

 

2 2

2 2

2 2 1
1, ,

1 1

c c c

c c c c

c k c
A

k c k c

      
  

        
 (6.29) 

 

From this method they obtain the general 

polynomials coefficients of Bessel filter. 

After designing of Bessel low-pass digital filter, they 

design the Bessel high-pass filter by similar way. The 

difference is removing normalization. For removing 

normalization they used the following equation: 

(s) (p)
ca p

s

H G 


                                        (6.30) 

They obtained relevant digital filter coefficients B, A 

of order 2 

(where [ 0, 1, 2], [ 0, 1, 2]B b b b A a a a  ) 

2 2 2

1 2 1
, ,

c c c c c c

B
c k c k c k

 
  

         
              (6.31) 

2 2

2 2

2 2
1, ,c c c

c c c c

c c k
A

c k c k

     
  

      
                                        

(6.32) 

And the relevant digital filter coefficients B, A of 

order 1 is: 

1 1
, ,0

1, ,0

c c

c

c

B
d d

d
A

d

 
  

  

  
  

  

 

To ensure the methods mentioned above 

correct they validate them by MATLAB program and 

determine the frequency response for 5
th

 order Bessel 

digital filter as shown in figure below. 

 
Fig 6.9:- Bessel digital low-pass filter frequency 

response 
 

 
Fig 6.10:- Bessel digital low-pass filter frequency 

response 
 

The results of figure (6.9) and (6.10) show 

that the designed filter meet the requirements. 

 

6.2 Discussion:- 

In the paper 1, Johnson et al present the 

new designing method of Bessel filter. They used the 

continued fraction to obtain the transfer function of 

Bessel filter .The resulting transfer function is 

realizable and has a time delay at w=0 which is 

independent of the order of the filter, and which may 

be varied from 0 to ∞ by changing α. But adding a 

parameter, in a Bessel filter transfer function, a > -1 

to the only for odd integers in the expansion not for 

even integer. In paper 2, Johnson et al present an 

extension of the Bessel filter where transfer function 

is a rational function with finite zeros. They combine 

the constant magnitude response of the all-pass filter 

with the linear phase response of the Bessel filter. In 

this paper they used the Budak and Pade 

approximation to design Bessel filter. In paper 3, 

Susan and Jayalalitha simulate the passive 

component L using GIC. This simulated inductor is 

applied for the realization of Bessel filter. The circuit 

simulation is done using PSPICE. After that this 
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simulated L use in low-pass, high-pass and all-pass 

filter and design Bessel filter and get a maximally flat 

response being equivalent to a time delay and linear 

phase response. This simulated L can be used for the 

design low frequency analog circuits which make use 

of the high value of unrealized L. In paper 4, 

designing of Bessel filter is given by Chengyun et 

al. In this paper a method for the design of digital 

Bessel filter is presented. It is based on MATLAB 

function besselap and zp2sos to obtain the Bessel 

polynomials. Using the bilinear transformation they 

obtain the general coefficients function of digital 

Bessel filters from H(z) and verified by MATLAB. 

Linear phase along with good magnitude flatness is 

obtained and method of determine the general 

coefficients function of digital Bessel filter can be 

deduced. 

 

6.3 Comparison Table:- 

Paper Approach Strength Weakness 

Paper 

1 

Using the 

continued 

fraction to 

obtain the 

transfer 

function of 

Bessel 

filter. 

At w=o time 

delay is 

independent 

of order of 

Bessel filter 

and the 

modified 

Bessel filter 

transfer 

function is a 

realizable. 

Adding a 

parameter, 

in a Bessel 

filter 

transfer 

function, a 

> -1 to the 

only for 

odd 

integers in 

the 

expansion. 

Paper 

2 

Combine 

the 

constant 

magnitude 

response of 

the all-pass 

filter with 

the linear 

phase 

response of 

the Bessel 

filter 

Time delay 

of the all-

pass filter is 

flat for 

approximate

ly twice the 

frequency 

range as that 

of the Bessel 

filter of 

same order. 

Step 

response 

has a 

nonzero 

initial 

value. This 

could be 

undesirable 

for some 

application

s. 

Paper 

3 

Obtained 

the 

simulated 

inductor 

circuit 

from the 

GIC which 

is use for 

realization 

of Bessel 

filter. 

Due to the 

simulated 

inductor the 

use of 

passive 

component 

such as 

inductor in 

analog 

circuit is 

very easy at 

low 

frequencies.  

 

Paper 

4 

Using the 

bilinear 

transformat

ion obtain 

the general 

coefficients 

function of 

digital 

Bessel 

filters from 

H(z) and 

verified by 

MATLAB. 

Linear phase 

along with 

good 

magnitude 

flatness is 

obtained and 

method of 

determine 

the general 

coefficients 

function of 

digital 

Bessel filter 

can be 

deduced. 

 

Table 6.2:- Comparison Table of Bessel Filter  
 

VII. Conclusion 
Filter can be designed in many ways. In this 

paper we discussed the Butterworth filter, Chebyshev 

filter, Notch filter, Comb filter and Bessel filter and 

gave the designing of filters on the basis of some 

standard paper which is based on filter design. In 

Butterworth filter, we discussed the four papers 

which is based upon the Sallen-key topology ,double 

precision method and take a nth order pole from 

(n+2)th order filter to improve the filter methods. In 

Chebyshev filter, we discussed the three papers 

which is based upon shifting the frequencies nearest 

to origin and not change in the cut-off frequency, use 

magnitude response of low pass filter and convert 

into Chebyshev filter magnitude response and 

Convert 1D Chebyshev polynomial into 2D 

polynomial. In Notch filter, we discussed the four 

papers which is based upon simple algebraic method, 

largen method, MATLAB and pole-position method. 

In Comb filter, we discussed the three papers which 

is based upon delta modulation, matrix multiplication 

and polyphase technique. In Bessel filter, we 

discussed four papers which is based upon continue 

fraction, combine the all pass filter, GIC and 

MATLAB methods. After discussing the methods of 

each filter we discussed the strength and weakness of 

each method in comparison table and give the review 

of filters. 
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